

12 つくる責任 つかう責任

GRCJ 3R:PVLiB Program

Sustainable recycle framework for PV and LiB

3R:PVLiB Cloud; Life Time Management Framework

Japan Future Renewable Energy Institute Co., Ltd.

Life Time Management for 3R

- Fact;
- PV module is main device of electricity generation
- LiB(Lithum Ion Battery) is main device of electricity energy storage

• Energy and their device must be include sustainable economy

Life Time Management for 3R

- Issues
- Disaster depend on climate change makes tons of discard PV modules
- Increasing after FIT PV modules

Recycling PV & LiB is current issues, not future

Innovation in manufacturing for a new sustainable resource recycle

科学技術振興機構報 第1406号 令和元年11月22日

Establishment of integrated circular manufacturing system by product lifecycle management and innovative dismantling technology development

Establish New working Group in GRCJ

Chair Person: Chiharu TOKORO Professor, Faculty of Science and Engineering, Waseda university

GReAT5 ; MoE (Ministry of Environment) support project Demonstration of establishing low carbon electricity system using reuse EV-LiB and PV module

MoE (Ministry of Environment) support project : Demonstration of establishing low carbon electricity system using reuse EV-LiB and PV module

I					
	検証事項	具体的な検証項目			
平成 29 年度環境省委託事業	経済的な合理性	没備投資及び使用電気料金の低減効果の検証			
	リユース品使用	 ・同一仕様品を大量に確保できないため、多種多様な仕様品を利用する技術の確立 ・リユース品の簡易な選別分類手法の確立 			
平成 29 年度低炭素製品普及に向けた 3 R 体制支援事業 リユース EV 蓄電池(LiB)・リユース太陽電池モジュール (PV)を活用した低炭素電カシステムの構築実証事業 報告書	でありる品員の 確保 -	 マレモジュ ・同一仕様品を大量に確保できないため、多種多様な仕様品を利用する技術の確立 ・リユース品の簡易な選別分類手法の確立 			
「「「」「」「」「」「」「」「」「」「」」「」「」「」」「」」「」」「」」「」	2. 実施概要				
平成 30 年 2 月 28 日 株式会社政委社	 実証期間:平成29年6月~30年2月 実施体制:・株式会社啓愛社 ・ガラス再資源化協議会 ・株式会社動力 ・株式会社浜田 ・栃木日産自動車販売株式会社 				
【連携法人】 ガラス再資源化協議会 株式会社 動力 株式会社 浜田 エコスタッフ・ジャパン 株式会社	・ ニナコン株式会社 ・ 東京大学 ・ エコスタッフ・ジャパン株式会社 実証場所:株式会社啓愛社 栃木リサイクルセンター 栃木県河内郡上三川町大字石田 2309-2 設置設備:・太陽光発電 49.71 kW(三相用 21.96 kW+単相 27.75 kW) ・蓄電池 71.82 kWh(V2H 33.6 kWh+蓄電池 38.22 kWh)				

http://www.grcj.jp/dcms_media/other/GRCJ%20GReAT5%20EV-report.pdf

Trial for Inspection of reuse PV and LiB

表 8.1.2 使用済み PV モジュール 251 枚の検査結果

=>./7	STC 出力比	選別結果			
529	STCP max/定格	枚数	リユース率		
Α	81%	124 枚			
В	70.0%~80.9%	43枚	80 5%		
С	60.0%~69.9%	21 枚	00.570		
D	50.0%~59.9%	14 枚			
E	40.0%~49.9%	5枚	***		
F	0.0%~39.9%	10 枚	***		
Н	破損	34 枚	***		
計		251 枚	100.0%		

図 8.1.1 低炭素電力システムの構成

Recycling action of the disposal module by Trina & GRCJ

トリナ・ソーラー 廃棄太陽電池モジュールのリサイクル受付のお知らせ

この度の西日本豪雨により被害を受けられた皆さまに、謹んでお見舞いを申し上げます。 被災地の一日も早い復旧と復興を心よりお祈り申し上げます。

Trina Solar(以降「トリナ・ソーラー」もしくは「当社」)は、太陽電池モジュールの3R(リデュース・リユー ス・リサイクル)の取り組みの中で、ガラス再資源化協議会(GRCJ)に加盟し、パネルのリサイクル問題に 早くから取り組んできました。この度の被害による当社製モジュールの廃棄処分は、当社にてリサイクル 処理を受け付けております。(当社が会員となっている GRCJ を通じてパネルの回収、リサイクルの仲介を いたします。運搬費等一部ご負担いただきます。)

出典:トリナ・ソーラー プレスリリース 2018年7月

Typical EU-Recycling of PV module by Veolia

Typical Recycling Process of PV module by FIRST SOLAR in USA

半導体素材 90%以上 & ガラス 90% をリサイクル

Life Time Management Scheme

Subtitle

Life Time Management for 3R-PV & LiB

PV(Photo Voltaic) module type and structure

PV module structure and materials

表 1.1-1 太陽光発電設備の素材構成

項目	kg/枚	構成比 (%)		
シリコン	1. 10	7.6%		
板ガラス	8. 63	59. 2%		
アルミニウム	2. 31	15. 8%		
銅	0. 10	0. 7%		
充填材	1. 73	11. 8%		
PET	0.66	4. 5%		
PPE	0. 06	0.4%		
合計	14. 59	100. 0%		

図 1.1-1 太陽電池モジュールの断面図(結晶シリコン系)

出所)株式会社三菱総合研究所「平成24年度使用済再生可能エネルギー設備のリユース・リサイクル基礎 調査委託業務報告書」

PV module type

種類			特徴	モジュール 変換効率[%]	セル外観
シリコン系	結晶系	単結晶	シリコンの原子が規則正しく配列した構造で、 変換効率の高い太陽電池を作ることができる。 製品の歴史が長く、豊富な実績を持っている。	15~17	
		多結晶	単結晶シリコンが多数集まってできている太陽 電池。単結晶に比べて、変換効率は低いが安価 に製造ができる。	13~15	
		ヘテロ接合	結晶系基板にアモルファスシリコン層を形成し た高効率な太陽電池。変換効率が高く、特に住 宅などの限られたスペースへの設置に優れる。	16~19	
	薄膜系	アモルファス	シリコン原子が不規則に集まった太陽電池。薄 くても発電できる(結晶系の約 1/1000)。また、 ガラスやフィルム基板上に製造が可能。波長感 度は短波長側にある。	6~7	
		/ 膜 系	/膜系	多接合	異なる波長感度特性を持つ二つ以上の発電層を 重ね合わせたもの。このため、単接合により発 電効率が向上している。アモルファスと微結晶 (薄膜多結晶)を組み合わせたタンデム構造が 主流。トリプル構造もある。
化合物系	CIS/ CIGS 来		鋼(Cu)、インジウム(In)、セレン(Se)の3 つの元素を主成分とした太陽電池。CIGSは、ガ リウム(Ga)を加えている。従来型のシリコン 結晶系太陽電池とは全く異なる構造である。	11~12	
	その他		異なる元素を組み合わせた構造の太陽電池。 GaAs、CdTe などがある。		

参考) 一般社団法人太陽光発電協会(編集)「太陽光発電システムの設計と施工」

表 1.1-2 太陽電池モジュールの種類

市場に於ける設置量としては、効率とコ ストの面から単結晶Si系が主に販売されて いる。

Forecast of materials of after FIT PV modules

図 1.3-1 太陽光発電設備の排出見込量(素材構成内訳)(2015 年~2030 年) 参照)環境省「平成24 年度使用済再生可能エネルギー設備のリユース・リサイクル基礎調査委託業務報告 書(株式会社三菱総合研究所実施)」の見込量から、重量構成比率を用いて各素材の見込量を算出した。

Recycling Process of PV module

出所) NEDO ニュースリリース「太陽光発電の大量導入社会を支えるプロジェクトで新たに テーマを採択」(2015年9月16日) http://www.nedo.go.jp/news/press/AA5_100454.html

Disassembled materials from PV module

Expected Disposal Volume of the End-of-Life Facilities for PV Module

	排出見込量 (B)、(C)	平成27年度の 産業廃棄物の 最終処分量に 占める割合		
2020	約0.3万トン	0.03%		
2025	約0.6万トン	0.06%		
2030	約2.2トン	0.2%		
2036	約17~28万トン	1.6~2.7%		

Type of PV modules

Facilities capable of recycling photovoltaic cell modules (GRCJ GReAT6)

• The facilities that are currently able to recycle photovoltaic cell modules as determined by the Glass Recycling Committee of Japan (GRCJ) are as follows.

Harita Metal Co., Ltd.			\sim				Ali	ready accepting goods for		
Address		34-11 Shinbori, Imizu City, Toyama	DOWA	} `		MATEC		ree Ha	recyclingHas the capability to accept	
Equipment capacity		2,800 tons/month (20 tons/hour, 7 hours/day x 20 days operating)	(Kosaka Smeltery) Harita Metal			Corporation		goods for recycling		
Quantity of goods		110 tons/year (2014)			√ inan			Tosh	iba Environmental Solutions Co.	
accepted up to now		8 tons/year (2015)			oration	ration Address		20-1 Yokol	Kansei-cho, Tsurumi-ku, hama City, Kanagawa	
Areas for acceptance of goods		in the Hokuriku region, Niigata, Gifu, Nagano)				Equipment capacity		Crush 44 to	ning capacity ns/month/machine	
Sales	Glass	Tile manufacturers	CO., Ltd.	Kei	Keiaisha Co., Ltd. Orix	Quantity of goods accepted up to now		180 t	180 tons/year (10,000 sheets/year)	
channels for products after	Scrap cell sheets	Smelting companies	Kaiho Sangyo	Co., Or				Note: Avera	rystalline system 250W class e for 2013 - 2015	
processing		Hirakin Mitsubi	ishi ials		ervices pration	Areas for acceptance H of goods		Head Affilia	ead office: Kanto region ffiliates: Nationwide	
Yamakoh Co., Ltd. Shinryo Corporation Kyushu Metal Industry Co., Ltd. NPC Recycle Tech Japan Corporation			a ntal s on	channels for products after processing		w qı 	 with high resource value (with large quantities of Ag) → Crushed and provided to smelting companies as resources (2)Undamaged modules → Separated and recycled as sheet glass (currently in development) 			
Hamada C		Hamada Co., Ltd. / NPC Inc.	,,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				cell	batte	rated and then recovered as ry powder (in a powdered state)	
Address 2889 I Matsur		2889 Nishihabu-machi, Matsuyama-shi, Ehime	7-5 Keihinjima 2-chome, Ota-ku, Tokyo				sheets	a res	ource	
Equipment cap	acity	86.4 tons/month	86.4 tons/month						Recycle Tech Japan Co., Ltd.	
Quantity of go	de accented	(4.32 tons/day x 20 days)	(4.32 tons/day x 20 days)		Address			204 Jinguji 1-chome, Minato-ku, Nagoya City		
up to now		i to tonsy year	_		Equipment capacity				642.6 tons/month	
Areas for acceptance of goods		Nationwide but primarily the Kinki region	Nationwide but primarily the Kanto region		Quantity of goods accepter now (tons/year)		accepted	up to	2014 Approx. 54 tons/year Approx. 2,700 sheets	
Sales channels for products after processing	Glass	Glass manufacturers (anticipated)	Glass manufacturers (anticipated)						2015 Approx. 36 tons/year	
	Scrap cell	Smelting companies	Smelting companies		Areas	Areas for acceptance of good		ds	Nationwide	
Notes	Research institution owned b		Used in prototypes		Sales produ	channels for cts after	Glass		Cullet trading companies (for use as raw material for glass wool)	
		research materials)	processing permit expected in April 2017 or thereafter		processing		Scrap sheets	cell	Rare metal recycling companies	

22

Type and Structure of LiB(Lithium Ion Battery)

Types of LiB

Can Type

Cylindrical Type

Laminated Type (Pouch)

Lib materials for recycle

Cathode Material = 正極材(リチウム+α) Corrector : Alumiun Foil = アルミ箔 Anode Material = 負極材(黒鉛) Separator = セパレータ(多孔質のフィルム) Electrolyte = 電解液 Corrector : Copper Foil = 銅箔 Container = パッケージに使う材料(アルミ) Others = その他、バインダーなど Establishment of integrated circular manufacturing system by product lifecycle management & innovative dismantling technology development

By Prof. Tokoro

リチウムイオン電池のアルミ箔と正極活物質の物理的分離

製品を構成している異種材料部品を簡単に分けて外すことが 可能な「新規電気パルス法」の技術開発に取り組み

THANK YOU