第9回 Eco Premium Club シンポジウム

安井 至

国際連合大学名誉副学長·東京大学名誉教授 (独)製品評価技術基盤機構(NITE)理事長

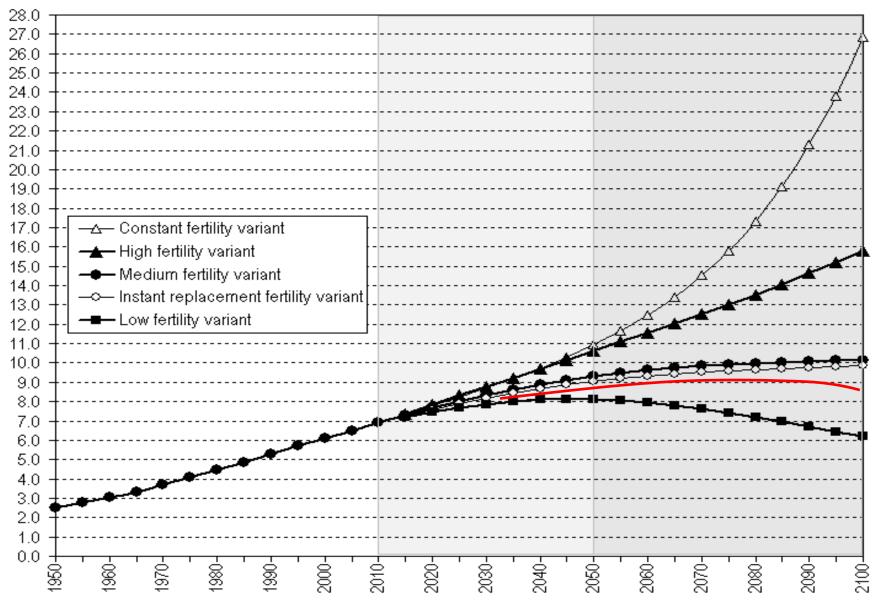
http://www.yasuienv.net/

「Rio+20」でのGreen Economy

- この20年間で人口は53億人から70億人 世界全体のGDPは2倍になった
- 先進国はより貧乏に、途上国はより強欲に
- UNEPの定義、「環境リスクを減らし生態学上の希少性を守り つつ、厚生と公正を改善する経済」
- しかし、本音は、先進国と途上国で異なっているのが通例
- 結局2015年がターゲットのミレニアム開発目標=MDGの後継を作ることだったか
- Millennium | Sustainable だけの改正

世界の状況もやはり「飛べないまま」だ! なぜか? 誰も決められないから!

さて、何をきっかけとして飛ぶのだろうか 🖒 危機感地球上で最大の問題は何か


それは、

「限界のある地球上での限界のない欲望の戦い」

- その結果は明白で、地球が負け、そして、
- 限界のない欲望も、結果的に負ける
- この結果が出るのは何年後か?
- 個人的予測は、まず、2080年頃にかなり苦しい時代が来る のではないか
- 何が変化して苦しい時代が来るのか
 - 1. 地球上の人口が極大値になる
 - 2. 環境変動が、生活・居住の大幅な変更を強いる
 - 3. 国が弱体化し、対策用の資源・資金が不足する

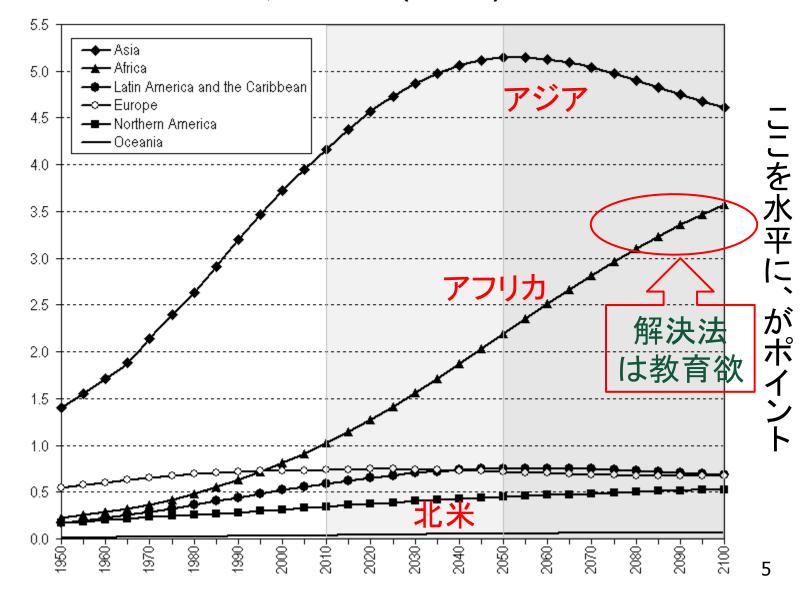
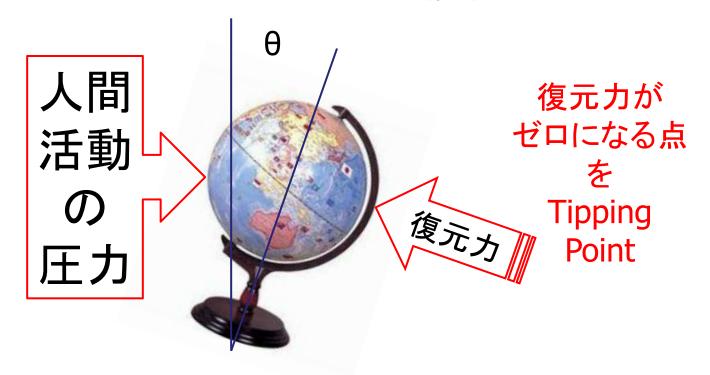

World Population Prospects, the 2010 Revision

Figure 1: Estimated and projected world population according to different variants, 1950-2100 (billions)

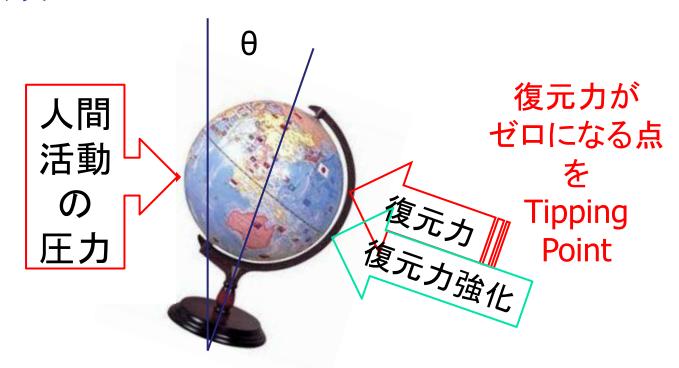
World Population Prospects, the 2010 Revision


Figure 2: Estimated and projected population by major area, medium variant, 1950-2100 (billions)

もう一度、環境変動を基本から考えよう!

物質・エネルギー・生命・気候システム

■ 人間活動は、地球のあらゆる資源に依存して 行われており、地球の状況を撹乱している。



■ 安定な定常状態を保つということか?

Herman Daly Steady State Economics 1971

- "再生可能な資源"の持続可能な利用の速度は、その供給源の再生速度を超えてはならない=木材・紙や薪・炭、漁獲量、水などの場合
- "再生不可能な資源"の持続可能な利用の速度は、持続可能なペースで利用する再生可能な資源へ転換する速度を越えてはならない=化石燃料・プラの場合
 - 金属、鉱物資源などについては、適用不能だが、リユース・水平リサイクルが必要条件であることは明確
 - ただし、エネルギー源を再生不可能な資源に依存している限り、余りにも 多大なエネルギーを使用することは非持続可能である
 - しかし、再生可能なエネルギーのみに依存すれば、リユース・水平リサイクルが条件を満足する 本格開発は1975年以降
- "汚染物質"の持続可能な排出速度は、環境がそうした汚染物質を循環し、吸収し、無害化できる速度を越えてはならない=公害型汚染物質、温室効果ガス、オゾン層破壊物質、廃棄物

人類のできること

復元力の強化を支援する=汚染物質の処理・処分 温室効果ガスを除けば成功例あり

人間活動の規模の縮小·変更による圧力の低下 =高効率化が望ましいがそれだけで可能か?

「限界ある地球と限界のない欲望の戦い」

ナウル島のグアノの例

■ グアノ (guano) とは、島の珊瑚礁に、海鳥 の死骸・糞・エサの魚・卵の殻などが長期 間(数千年~数万年)堆積して化石化した ものであり、肥料の資源として利用される。

ナウル国のグアノ

現時点はカルスト地形

- 年間200万トンを輸出
- 1989年に採掘量が減少
- 総計1億トンを採掘
- 高い国民所得で無税
- 医療・教育は無料
- 労働は中国人などで、調理もせず、すべて外食
- 経済は貿易依存度100%だった
- 21世紀になって、ほぼ枯渇(2000万トン残という説も)
- 現在、失業率90% もともと労働の意志なし

現在の消費文明も同様かもしれない

- ブルネイや中東産油国は大丈夫か
- 中国からの重希土類の輸出制限をWTOに提訴したが、輸出制限を行うのが当然か=やり方次第というところだが

- 環境排出に対して放出を規制した
 - 1970年代の日本の公害対策
- CO2排出に対して税金を課す
 - 環境税 スウェーデン、イギリス、ドイツなど、日本はこの程度
- 世界環境税の実現は?
- 世界地球撹乱税の実現は?

何をやっても、化石燃料は枯渇する

- 人類の歴史を700万年、ホモサピエンスの歴史を 20万年と見れば、化石燃料の枯渇は当然!
- 化石エネルギー文明は500年程度で終わるが、それも仕方がないのではないか
- ■「仕方がない」という発想は、後ろ向きか
- もう少々ポジティブな発想はないのか
- ■「持続可能性」に関することならブルントラント委員会という古典がある!!
- 1987年の「Our Common Future」
- 将来世代のニーズを損なうことなく、現世代のニーズを満たす

Our Common Futureを拡張解釈すれば

- エネルギーは使える量が重要、形態は無関係
- 枯渇という撹乱によって得られる見返りとしての価値 =未来世代のための 真の「イノベーション」に繋がるか
- 「イノベーション」の定義
 - それを加速する技術・製品・制度などを創造
 - これまでの価値観ではない価値観へ移行
 - いわば、「新しい文明の構築」
- 現状は18世紀以来のエネルギー消費文明
- さて、次の新エネルギー文明はいかなるものか?

辞書的定義:イノベーションとは?

- Innovation: Innovateの名詞
- Renewという言葉に近く、全く何もないところに何か を創ることではないかもしれない
- Renewは、古いものを壊して、新しいものを創る =「改革」、「革新」に近い
- 日本だと、Innovation=技術革新(1958年経済白書)と訳されるが、技術だけでは意味が狭すぎる
- それなら、何を革新するのだろうか?

イノベーションのための7つの機会

from 「イノベーションと起業家精神」by P.F.ドラッカー(1985)

- 予期せぬ成功、失敗を利用する
- 現実にあるものとあるべきものとのギャップ
- ニーズを見つける
- ■産業構造の変化を知る
- 人口構造の変化に着目する
- 認識(ものの見方、感じ方、考え方)の変化を とらえる
- 新しい知識を利用する

失敗=福島の状況は?

- ■地球版
- 何が変化して苦しい時代が来るのか
 - 1. 地球上の人口が極大値になる
 - 2. 環境変動が、生活・居住の大幅な変更を強いる
 - 3. 対策用の資源と資金が不足する
- 福島版
- 何が変化して苦しい時代が来たのか
 - 1. 巨大地震と巨大津波
 - 2 放射線汚染が、生活・居住の大幅な変更を強いる
 - 3. 対策用の空間と気力が不足する
 - 4. 福島上の人口の減少傾向が強まる

破壊的技術とイノベーション

from イノベーションのジレンマ を大変形

by Clayton M. Christensen (2001)

確立された技術

銀塩写真

固定電話

ノートパソコン

オフセット印刷

デスクトップパソコン

電力会社

旅行代理店

証券会社

破壊的技術

デジタル写真

携帯電話

スマートフォン

デジタル印刷

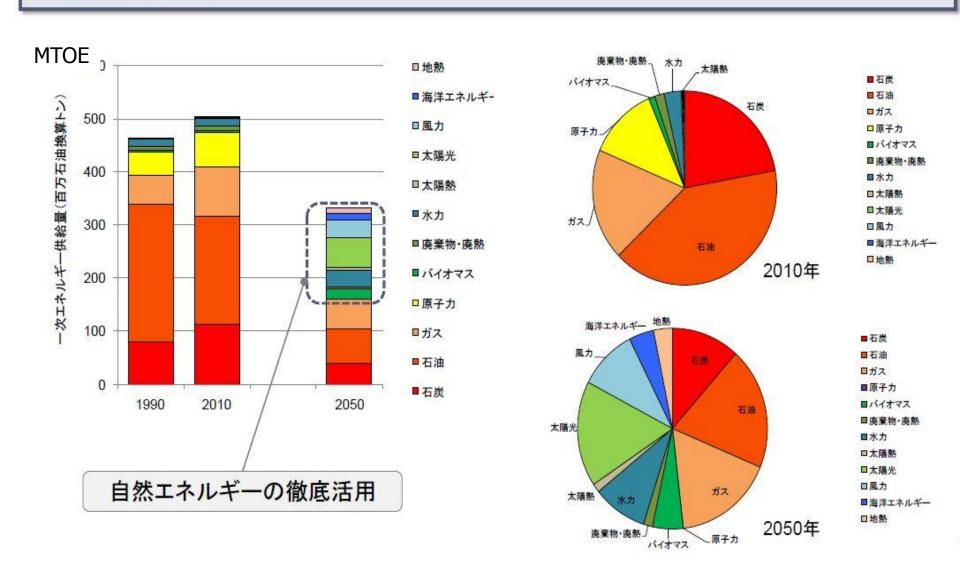
iPad、タブレット

分散発電

(自然エネ・燃料電池)

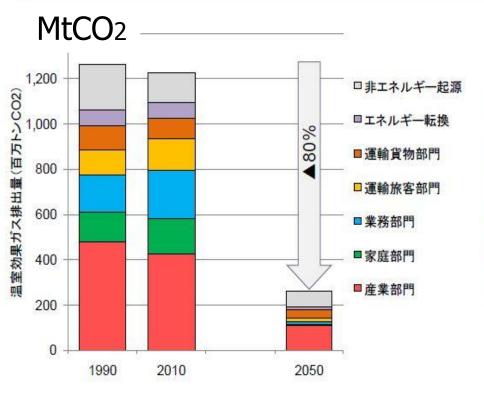
ネット予約

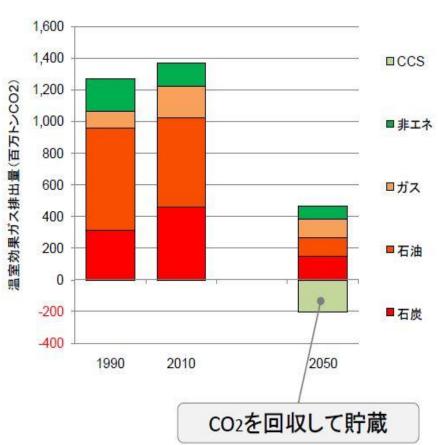
ネット証券


原発の割合の選択肢 エネ・環会議

	2010年	010 年 ゼロシナリオ		15シナリオ	20-25シナリオ
		追加対策前	追加対策後		
原子力比率	26%	0%	0%	15%	20~25%
尿丁刀几平		(▲25%)	(▲25%)	(▲10%)	(▲5~▲1%)
再生可能	10%	30% г	35%	30%	25~30%
エネルギー比率	1 0 70	(+20%)	(+25%)	(+20%)	(+15~20%)
化石燃料	63%	70%	65%	5 5 %	50%
比率	0 3 70	(+5%)	(現状程度)	(▲10%)	(▲15%)
非化石電源	37%	30%	35%	45%	50%
比率	3 / 70	(▲5%)	(現状程度)	(+10%)	(+15%)
発電電力量	1.1兆	約1兆kWh	約1兆kWh	約1兆kWh	約1兆kWh
无电电力量	kWh	(▲1割)	(▲1割)	(▲1割)	(▲1割)
最終エネルギー	3.9億	3. 1億kl	3. 0億kl	3. 1億kl	3. 1億kl
消費	kI	(▲7200 万 k)	▲8500 万 kl	(▲7200 万 kI)	(▲7200万kI)
温室効果ガス					
排出量	▲0.3%	(▲16%)	▲23%	▲23%	▲25%
(1990 年比)					

※比率は発電電力量に占める割合で記載。 括弧内は震災前の2010年からの変化分。


4 一次エネルギー供給量


• 2050年にはエネルギーの低炭素化が進み、一次エネルギー消費量に占める再生可能エネルギーの比率 が約5割となっている。

⑤ 温室効果ガス排出量

- 2050年において前述の技術(スライド13)の組み合わせによって▲80%削減が達成するための姿が示唆された。その際に必要なCCSの量は2億トンCO2/年である。
- 2050年において排出量が大きな部門は、産業部門、運輸貨物部門、非エネルギー起源である。

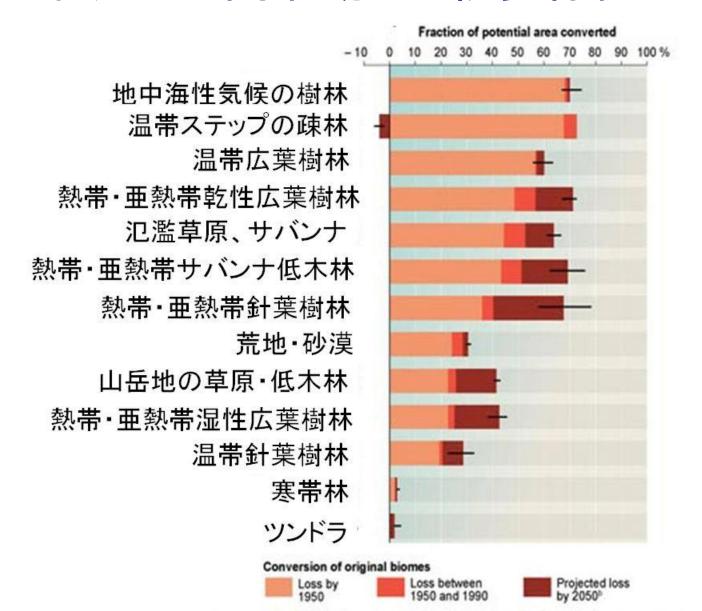
人類史的イノベーションの実例は何か?

- 火を使いこなす、調理をして食べる、農業の発明、酒の発明
- 材料=石器、土器、鉄器、織物、紙、ガラス
- 文字の発明、哲学・宗教・数学の発明
- 法律などの社会的システム(ローマ法?)
- 天体望遠鏡→天文学(観察)→哲学から科学へ
- 印刷による知識・記録の普及
- 化石燃料、エネルギー、熱力学、触媒(空中窒素固定)
- 移動:船の実用化、自動車の大量生産、飛行機の実用化
- 電力供給の実現、テレビ・冷蔵庫・洗濯機の普及
- プラスチックと石油化学
- 医薬品、外科手術、抗生物質
- 微細化技術、特に、半導体、部品など
- インターネットの普及、Googleの検索エンジン
- 携帯電話の実用化、ウォークマン、電池の発明・進化

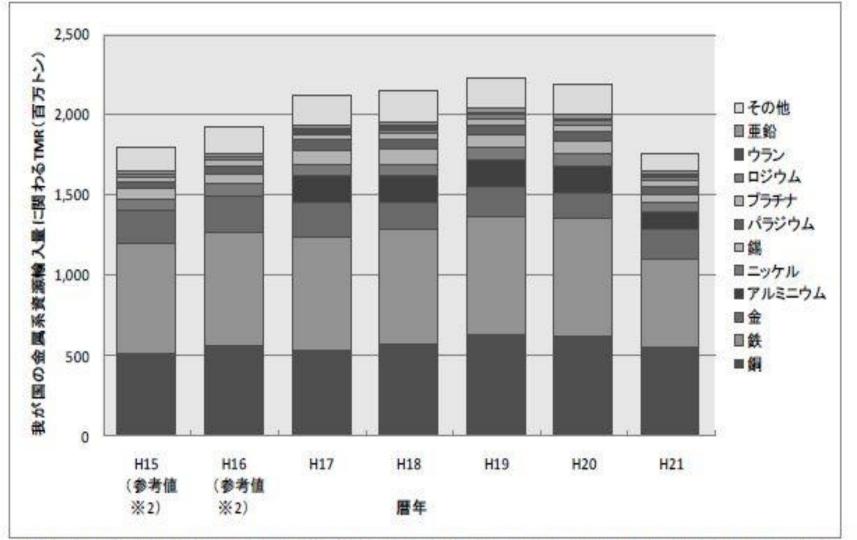
福島発の新イノベーション

人類が自然エネルギーだけで生存できるようになる 完成=CO₂ゼロエミッション実現 2150年?

- これは人類史的な視点から見ても、重大なイノベーションになりうる項目である
- 比較すれば、
 - 化石燃料の節約は、それほど大きなイノベーションと は言えないのではないか?
 - そうかもしれない!
 - プラスチック系の物質の循環は?
 - 化石燃料起源である限り、それほどのイノベーションとは言えない可能性が高い?
 - 生物起源に変えることは? 再生速度の縛り!


自然エネルギーによる 金属・鉱物の完全循環は?

- これまで、循環は、枯渇を防止するのがメリット
- それに要するエネルギーと二酸化炭素の排出量がデメリットとして問題視
- もしも自然エネルギーだけで、循環が実現できれば、環境 負荷面から言えば、完全循環が必然になる
- となると、エネルギー使用量を低減することは、イノベーションと言えなくなるかもしれない。
- 完全循環は、イノベーションなのか?
- それほど重大なイノベーションではなくなるのか?



そんなことはない。 生物多様性を考えると、重大なイノベーション!

持続可能性へのLCAの役割 土地利用と人間活動 生物多様性

しかし、TMRで見れば、銅、鉄、金、アルミ、ニッケルの順

- ※1 金属資源の並び順は平成21年の金属系資源輸入量に関わるTMRの大きい順となっている。
- ※2 平成 15年と 16年に関しては、「ケイ素」、「ウラン」、「ヒ素」、「カドミウム」、「水銀」の値が不明であったことから参考値(平成 17~21年値は無し)としてのみ示す。

図 18 我が国の金属系資源輸入量に関わるTMRの推移

新規資源大幅削減·完全循環も? 循環型基本法、基本計画への反映

- 1. 循環量を増加させる →やってきた 済!
- 2. 資源生産性を向上させる →もう少々内容を 結局のところ、経済状態を反映し難しいか?
- 3. 循環を水平に近い形態 →まだ一部 水平にする意味は何か
- 4. そもそも使用量を削減する →最終解

日本全体で元素をいかに使うか

- 使用量を圧倒的に減らす技術―>元素戦略
 - 経産省、文科省の共同プロジェクト
 - 東工大の細野秀雄教授の研究がキッカケ
 - 12CaO 7Al₂O₃ で透明導電性
 - これまでは、In、Sn、Cd、などが必須
- できるだけ水平循環を行うこと
- 現在の価格では難しいものは、使用済製品の備蓄をすることは?

日本の

態の中で

反省=ではな

理状況

未知の宇宙 人類!

れたと考え、 **ます!**